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ON THE THEORY OF PLANE STRESS FOR
FINITE DEFORMATIONS*

Sen-IEn CHOU

Department of Engineering Mechanics, University of Nebraska, Lincoln, Nebraska

Abstract—By means of parametric expansions in terms of thickness k, of the undeformed plate, the equations of
plane stress for finite deformations of homogeneous, isotropic, elastic materials are derived from the three-
dimensional theory of finite elasticity without making any usual geometrical or physical assumptions other
than that deformation is symmetrical with respect to the middle plane of the plate. The equations of plane stress
are obtained as the coefficients of zero power of 4, in the expansions. Coefficients of higher order terms provide
interior corrections to the plane stress theory. The appropriate boundary conditions for these interior equations
are derived by the variational formulation of the three-dimensional theory of finite elasticity.

1. INTRODUCTION

THE general theory of plane stress for finite deformations of isotropic, elastic materials
has been considered by Adkins et al. [1] and can be found in {2]. The equations are derived
by assuming the thickness of the plate to be small so that, when no forces act on the major
surfaces of the plate, it is assumed that the principal stress components normal to the
middle plane of the plate vanishes everywhere, as in the classical theory of plane stress.
Instead of examining stresses at every point across the thickness of the plate, the stress
resultants as functions of position on the middle surface of the plate are considered.

In this paper, the equations of plane stress and boundary conditions for finite deforma-
tions are derived systematically from the three-dimensional theory of elasticity. The method
consists in assuming that the deformation is symmetrical with respect to the middle plane of
the plate and expanding the deformations and stresses into powers of the thickness h, of
the undeformed plate. Substituting these expansions into the constitutive relations and
equations of equilibrium, successive systems of equations are obtained by equating terms
of like powers of h,. The lowest order terms correspond to the equations of plane stress
theory, whereas higher order terms provide interior corrections to the plane stress theory.
The appropriate boundary conditions for these interior equations are derived by the
variational formulation of the three-dimensional theory of finite elasticity, without con-
sideration of the edge-zone solution. A similar problem for the classical linear theory of
plane stress has been considered by Reiss and Locke [3]. They derived the equations of
plane stress and boundary conditions by simultaneously considering expansions of interior
and edge-zone solutions, which is a generalization of the boundary layer method used by
Friedrichs and Dressler [4].

* The results presented in this paper were obtained in the course of research supported by the College of
Engineering and Architecture of the University of Nebraska through a Faculty Summer Research Fellowship,
1966.
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2. FORMULATION OF THE PROBLEM

Let a particle in the undeformed state be denoted by x; and the same particle after
deformation be denoted by y;, which is referred to the same set of rectangular Cartesian
coordinates as x;. We consider a plate of constant thickness h, in its undeformed state
bounded by the planes x; = +hq and the cylindrical surface f(x,, x,) = 0. The bounding
planes x; = +h, are referred to as the surface boundaries of the undeformed plate. The
surface |x3] < hy, f(x,,x,) = 0 is called the edge boundary of the undeformed plate.
The smooth curve B; x; = x,(s), x; = X,(s), x3 = 0, is called the boundary curve of the
undeformed plate.

We assume that the deformation is described by the mapping

Yi = yilxy, X3, X3). (2.1)
Using the formulas given by Green and Adkins [2], the strain tensor E;; is defined by
E; = 3{C;;—6;)) (22
where
Cij = Yeibrj (2.3)

and §;; is the Kronecker delta. The usual summation convention is used and Latin indices
take the values 1, 2 and 3. A comma denotes partial differentiation with respect to x;.
The equations of equilibrium in the absence of body forces can be written as

(sjkyi.k)’j =0 2.4)

where s;; is the symmetric stress tensor in the deformed body measured per unit area of the
undeformed body.

When the body is homogeneous and isotropic, the strain energy function W per unit
area of the undeformed body is

W—_— W(11,12,13)

where 1,, I, and I; are strain invariants

I, = Cy, I, = (I3 — CpuCoun)/2, I3 = det(C;)). (2.5)
The constitutive relations take the form
ow
S = 3E,, (2.6)
or may also be written as
s;j = ®3;+¥B,;+ pC,; 2.7
where
D= 2%‘:, Y= Z%IVYZ-, p= 21327”: (2.8)
and

Bij == 5U11"‘CU (29)
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In (2.7), C;; is the inverse of C;; and has the relation
Cikékj = dy;. (2.10)

When the material is incompressible, I; = 1 and W is a function of I, and I, only. The
constitutive relations (2.7) still hold, but in this case p is a scalar invariant function of x;.
When surface forces ot} are prescribed at the boundary

SkiVjk oM = otf (2.11)

where n; is the component of unit normal vector to the undeformed position of a surface
in the deformed body. On the surface boundaries x; = +h, the unit normal vector is
given by

o = (0,0, 1).
Assuming that surface boundaries are free from surface tractions, (2.11) then yields
Sia¥ie =0
which has a unique solution
Ssi3 =0 atx; = +h, (2.12)

since det(y; ) is assumed to be nonvanishing. On the edge surface, the unit normal vector
is given by

oft; = (M1 5 oMz, 0).
The edge boundary conditions are, from (2.11),
Skayj.k ona = Ot;‘ on B. (213)
Here 4n, is the component of unit normal vector on B. Greek indices here and in the follow-
ing take the values 1 and 2.
Although any deformation can be considered as a sum of symmetrical and anti-
symmetrical deformations satisfying coupled equations, in this paper attention will be
given to deformation symmetrical with respect to the middle plane, ie., extension of the

plate by edge forces. This implies that y,, 5,4, 535 are even functions of x;, while y3, 5,5, are
odd functions of x5.

3. PARAMETRIC EXPANSIONS

It is assumed that y,, which is an even function of x5, and y,, which is an odd function
of x5, may be expanded into powers of x; in the form

YolX1, Xz, X3) = ¥OUxy, X5, 01+ X539 200x, , x5, 0)+ x5y00x,, x5, 0)+ -+ - (3.1)
y3(x1 s Xas X3) = x3y(30}(x1 s X2, O)+ x§y(32)(x1 » X2, 0)+ e (32)
Introducing nondimensional quantities

& = x3/hy, Z = y3/ho (3.3)
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expressions (3.1) and (3.2) then yield

VuldXy, %5, &5 ho) = y(aO)(xl , X))t h%)ézygz)(xu X,)+ hgé4yfz4)(x17 X))+ -

Z(xl ’ x23 é’ hO) = éZ(O)(xl s x2)+ h(z)észu)('xl > x2)+ e
where

y(a")(xl s xZ) = yLn)(xl » X2 0)

Z(")(xl s x2) = y(3n)(x1 » X2, 0)

are functions of x, only.

We also assume that the tensors C;;, Cy;, s;;, B;; and strain invariants I,, I,, I can be

expanded into powers of h, in the form

Sy, %2, &3 hg) = fOxy, xp, E)F ho fPxy, x5, O+ B fPxy, x5, O -

(3.6)

Substituting expansion of the form given by (3.6) into (2.3) and equating terms of like powers,

we have
(0) __ ,(0),(0) W B 65— ... —
Cog = VpaVpp> Cup = Co = Cop = =0
2 2 0 2 2 0 0 0
CH = 62 owohtYoVout ZZ5))
4) _
C(aﬂ) =
1] 2 4
C=CP=CH=--=0

C = {ZOZ+ 2)
CR = SQIZYP+ NP+ ZPZO+IZ0Z)

ng) = ..

CR=(ZOP, CY=CP=-=0
c@ = 262(2y§,2)y‘ﬁ,2)+ 3Z©Z@)y
C{=.--.

Equation (2.10) can be written as
(CR+ heCP+ BECP+ - )CP+ hoCIP+ B+ - ) = 65

which yields
CRCY =8y
CPT+ T = 0
COCP+ CPCH+CPCH =0
CRTH+ YT+ CPTY+ CPTY = 0.etc

(3.7)

(3.8)
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The solutions of (3.8) for C{? yield

0)7~5(0 0) — 0 0) _
C(avjc(rﬂ) = up> C9} = 1/C4Y, Cy
A _ 7~ (1) 1) 75(0) (0
CY=CH=0, CH= —cga’éa;cs..x
C2 — _ cOCWF(O0) _ (2)F(0)7(0)
Caﬂ - C G C an C'w Crﬁ Cmn

CR = (c<“c<”+ cRTICY, TR =0 (3.9)
CP=C% =

CQ = —CYTUTQY - CHTHTY — CYHCAUCY

C(4) —

Note that each term in (3.9) can be determined step by step starting with the first equation
of (3.9) with the help of (3.7), since the right-hand side of (3.9) are known functions at each
step. The strain invariants, from (2.5), yield

1(10) = Cﬁ?’, [(11) = 1(13’ =...=0
2 2 4 4
I(1)=C£'i)’ I(l)=C£i),"'

1) = [0 - CYCy (P12

IP=1P=...=0

19 = IPIP - CYCH - CRCH-CHCR)2 (3.10)
IP=...

I = [CQCH—(CYPICY, P =1P=--.=0

2 0 0 2 0 0 2 0 0 2
1(3) ()C() () () ()C(“)+C()C(“)C(22)

The tensor B;; defined by (2.9) is similarly expanded into the form given by (3.6) to yield

B = 6,1"~CY, By =BY=-=0

B = 0,IP'~CE. By =--.,

B(0)= 32,23) =...=0(

BY=-C¥  BY = -CY, o
BY = IP-C,  BY=BY=-=0

2) _ q(2 2 4) _
BR =19-C8, BY=--
The strain energy function W can be written as

W= W(IP+hIP+ -, I9P+RIP+ -, I9O+RIP+ ... (3.12)
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The three invariant functions @, ¥, and p given by (2.8) are then expanded into Taylor’s
series with respect to I, 1Y and 1Y to yield,

Dy = DI IO TY), B, =By =B=--. =0
®, = BI'P+ CIP+ DI

O, =,

W= W (IO IO 1), W, =W, =¥, =...=0

Y, = CIP+ EIP+ FIY (3.13)
Y, =,

po = plIPID ISP, pr=py=ps=---=0

pa = ISADIP+ FIP+ HIP)+ 1Epy/1)

p4 = e,
where
2w W ;W
=227 =27 =257
or al,41, al,01,
*PwW bkl 4 W
E=2"", =2, H=2—_
o a1,00, a1z

are to be evaluated at I, = IV, I, = I, I, = I
The stress tensor s;; is also expanded into powers of hy and with (3.9), (3.11), (3.13), the
expansion yields

S5 = @by Wold,y(Cl+ Z2Z)— C§I+ poCSY

s = Byt ¥ CO+ poCR (3.14)
59 -0
S = 58 =0

o - } (3.15)
s = —¥oCH+ poC¥
Sﬁr) = @04+ \PZ(éaﬂI(IO)- CL%))+ lI}0(59411(12) - C(a%))"*' PzC(a%)
583 = @+ oI = Ci)+ ol — CEP+ p, R+ poCH (3.16)
$2 =0

a3

and higher order terms.

4. INTERIOR EQUATIONS
The surface boundary conditions at ¢ = +1 given by (2.12) yield

=0 até=x1, n=012... (@.1)
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Examining expansions (3.14)+3.16) and with the help of (3.7), (3.9), (3.10) and (3.13), it can
be shown that
52"3) = f"ii"a,)(xl ) X3), n=12335,... 42
s o= E50(x,,x,), n=0,2,4,...

where 5%, §§) are functions of x, and x, only. The immediate consequence of (4.1) and (4.2)
is that

n) _ on)
Sa3 = S33

0, n=0,1,2,... (4.3)

in the interior region of the plate.
The equations of equilibrium (2.4), with (3.1), (3.2) and (3.14)~3.16), and (4.3) then
yield, for the coefficient of zero power of h,,

(55 Y9p)a = 0 (4.4)
(55'Z.§")e = 0. (4.5)

Since @, ¥y, poy, CQ, CQ are all functions of x; and x, only, the first equation of (3.14)
0> PO B B
shows that s{ is independent of £, i.e.

5533) = 5&%)(3‘1 »X5)
= Boboyt Wo[0,4(CO+ ZOZO) — COT+ poCY. (4.6)

Equations (4.4)(4.6) are thus six equations for the determination of six unknowns s{3,
Y0, Z'®_ These are basic equations of plane stress theory.
For the coefficient of h3, the equations of equilibrium similarly yield

(E2seg Vb + SR = 0 4.7
(ESGZP+SPZ M = 0 (438)
The first equation of (3.16) shows that

s = E253(xy, x2)

= @y0,5 ¥y (0upl? — CP)+ Wo(00p I — Ci)+ po CF. (4.9)

Equations (4.7)4.9) are six equations for the determination of six unknowns s, y2, Z%,
once the plane stress problem is solved. These are the first order interior corrections to the
plane stress theory.

Higher order corrections can be similarly obtained by taking coefficients of higher
order terms in the expansions.

5. BOUNDARY CONDITIONS

In this section, the appropriate boundary conditions for the interior equations obtained
in the previous section will be derived by variational formulation of the three-dimensional
theory of finite elasticity without considering edge-zone solutions. A similar method was
used by Reissner [5] to derive the boundary conditions for the classical plate theory.
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Consider the functional [6]

J = f [W(E;;)—s;E;] dvt -;:J‘ 5i{(Ci;—d;;) dv~— L ViotFdx,ds (5.1)
where v, is the undeformed plate, A, is the edge surface of the plate, ds the element of arc
length of the boundary curve B. It can be shown that [6] the vanishing of the first variation
of (5.1) yields as its Euler equations strain tensor (2.2), constitutive relations (2.6), the
equations of equilibrium (2.4), and the edge boundary conditions (2.13).

The first variation 8J = 0 has the form

W
f (%;—-s,-j} 6E,»jdxldx2dx3+f [(3(Cy;—06;)— Eyj] 0s;;dxy dx, dx;
Yo ij Yo

- f (Sijyk,i),j 0y, dx; dx; dxz+ [Si3Vi.i 5Yk]h~°ho dx, dx, (5.2)
vo Af

+ (Sabik oMta—otF) Oy;dx;ds = 0
Ae

where A, denotes the surface boundary of the undeformed plate. Equation (5.2) is to be
used in conjunction with the parametric expansions given in Section 3 which satisfy the
strain tensor (2.2), constitutive relation (2.7), the equations of equilibrium and the surface
boundary conditions at x = + h,. This implies that introduction of the results in Section 3
leaves the variational equation the form

JA (SkaYik ofta— otF) dy;dx3ds = 0. (5.3)

e

Introducing (3.3) and remembering that s;, = 0, equation (5.3} can be written as
J‘ (s'yayﬂ,y ona" Ot;) 6})‘3 dé dS+ hoJ‘ (hOSWZ,y Ona”‘ Otg) (SZ dé dS = 0 (5'4)
Ae Ae

Using the parametric expansions of s;;, y, and Z, and assuming that ,f and ,t§ can be
expanded into powers of h, in the form

Ot; = t}iO)(Sa €)+ h%t(ﬂZ)(S9 £)+ U

(5.5)
oty = hot§s, O+ mPs, O+ -
equation (5.4) then yields, for the coefficient of zero powers of hg,
) (V) o, —t) dyg déds = 0. (5.6)

For the first order approximation, 6y, = dy}"), so that (5.6) becomes
1
$ 1 on— i de sy as = 0
-1
which yields, for the appropriate boundary conditions of the plane stress theory,

1 1
o =3[ P 9a (57)
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For the coefficient of h3, equation (5.4) yields
J (R Y+ s2YR) ona— 18] 6y, dE ds+ L (5627 on,—1§)6Z dEds = 0. (5.8)
A, .

In (5.8), 6y, = Sy + h3E25yP = hiE28y, since y@ is known from the first order approxi-
mation and hence dy> = 0. Similarly, 6Z = h3£>6Z®. Equation (5.8) then yields for the
boundary conditions of the second order approximation

1 1
f GO + 2y on,df=f £262)s, &) dé
-1 -1
(59)
1 1
j ESOZ,O on, dE = f EH9Xs, &) de.
-1 -1

The appropriate edge boundary conditions for higher order approximations can be
similarly obtained from equation (5.4).

6. INCOMPRESSIBLE MATERIALS

For incompressible materials, expansions (3.7) and (3.9) still hold. The expansions for
strain invariants I, and I, given by (3.10) remain valid, but now I; = 1 and from (3.10),

[CRCH—-(CDICH =1 (6.1)
CRCHCR+ CYCRCE+ CRCRCH
—(CHPCH — (CEPCH+ 2CHCHCY -208CHCY =0 (62)

and higher order terms. These are the incompressibility conditions.
The strain energy function W is now a function of I, and I, only. The expansions
for @ and ¥ given by (3.13) thus take the form

O, = O, (IO 1P), &, =G, =®B5=---=0
®, = BID+CI?, @, =---

2 1 2 : (6.3)
¥, = P (I, ID), Y, =¥, =¥ =---=0

¥, = CIP+EIP, W, =--.

where B, C and E are the same as before. The invariant function p is now an unknown
function of x;. We assume that p can be expanded into powers of h, in the form

p(x1, %3, &5 ho) = polxy, x2)+ hcz)fzpz(xx , x2)t h3€4p4(x1 , X))t e (6.4)

where pg, p,,Ps--- are unknown functions to be determined. The expansions for the
constitutive relations (3.14)+3.16) are valid, except now @, ¥ and p are given by (6.3) and
(6.4).

The equations of equilibrium for the plane stress theory are still given by (4.4) and (4.5),
and the constitutive relations given by (4.6). These equations together with the incom-
pressibility condition (6.1) constitute seven equations for the determination of seven
unknowns s{3, ¥, Z9 and p,. The edge boundary conditions given by (5.7) remain
valid.
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Higher order approximations for incompressible materials can be similarly obtained.
For example, for the first order interior correction to the plane stress theory, equations of
equilibrium (4.7) and (4.8), the constitutive equations (4.9), and the incompressibility
condition (6.2) are seven equations for the determination of seven unknowns si2, y), Z®
and p,. The edge boundary conditions are given by (5.9).

7. SUMMARY

By means of parametric expansions in terms of thickness 5, of the undeformed plate,
the equations of plane stress for finite deformation are obtained as the coefficients of
zero power of h, in the expansions. The stress components s'§ vanishes identically, and
the stress component s vanishes identically as the natural consequence of surface bound-
ary conditions. The remaining stress components s are functions of x, only and are given
by

S = @5+ Wol0,(C+ 202N - C Y1+ poCY. 7.0

The equations of equilibrium have the form
(s Vipa =0 (72)
Pz, = 0. (7.3

The edge boundary conditions are given by
1
oo =3 [ €94 (1.4
-1

The condition of vanishing of 53, that is,
0 = Do+ ¥ CL)+ po/(CKI)? (1.5)

is an additional condition which must be satisfied so that plane stress theory is truly two-
dimensional. When Z‘® varies slowly with respect to x,, the derivative Z,'”’ may be assumed
to vanish identically and equation (7.3) is satisfied automatically. Equation (7.5) then
furnishes the relation between Z® and y©. In such case, (7.1), (7.2) and (7.5) are basic
equations for the plane stress theory.

The coefficients of higher order expansions provide the three-dimensional corrections
to the plane stress theory. The first order corrections to the plane stress theory are given
by (4.7), (4.8) and (4.9). The appropriate edge boundary conditions are given by (5.9).
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AGcrpaxy—IIpr noMoLl HapaMeTPHYECKOro PA3NIOKEHHA 0 TOMLMHE HeNeDOPMUPOBAHHOMN ITACTHHKY,
BLIBOAATCH YDABHEHHA IUIOCKOTO HADAXEHHOrO COCTOMHMA st KOHeuHbiX Jedopmauuit ogHOpPOAHBIX,
H3OTPONHBIX, YOPYTUX MAaTCPHAJIOB. ¥ PaBHERUA OCHOBaHbI Ha TCODHE YAPYIOCTH KOHEYHBIX nedopMauuil,
Ge3 yuera OGRIYHBIX TEOMETPHYECKHX MITH QHIHYECKHX FHIOTE3, XPOME NPEANOTIOKEHHS ,UTO fAedopManus
AHACTCH CHMMETPHYECKOH OTHOCHTENIRHO CEPeIMHHON IUIOCKOCTH ILTACTHHKH. YDPaBHEHHMsi IUIOCKOTo
HaNPAXKCHHOTO COCTORHKS NONYYCHH TPHPABHUBAHHEM HYMIO XO3MPUHLUMEHTOB NpPH HYAEBBIX CTENEHAX /1,
onucaHHMX paznoxeHHi. KodpduumenTsl WiCHOB BBICINErO NOPAAKA OAIOT BHYTPEHHbIE NOOPABKH K
TEOPHH IIOCKOTO HANPAKEHHOTO COCTOSHMA. BBLIBOAATCA COOTBETCTBYKOLUHE IPAHMYHBIC YCMOBHS ANA

3THX BHYTDEHHMX YDaBHeHHH, IMYTEM BapHAUKMOHHOH (OPMYJIHPOBKH TPEXMEPHON TCOPMHM YOPYIrOCTH
KOHEYHBIX Hehopmanuit.



